Quasi-Interpolation on the 2-Sphere Using Radial Polynomials

A. K. Kushpel¹

MECC-UNICAMP, CAIXA Postal 6065, 1381-970, Campinas SP, Brazil; Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, United Kingdom;

and Institute of Mathematics, National Academy of Sciences of the Ukraine, Kiev, Ukraine

E-mail: ak99@ime.uncamp.br, ak99@mcs.le.ac.uk

and

J. Leveslev²

Department of Mathematics and Computer Science, University of Leicester, Leicester LEI 7RH, United Kingdom E-mail: jl1@mcs.le.ac.uk

Communicated by Manfred v. Golitschek

Received April 27, 1998; accepted in revised form March 25, 1999

In this paper we consider a simple method of radial quasi-interpolation by polynomials on S^2 and present rates of convergence for this method on a wide range of smooth functions. © 2000 Academic Press

Key Words: sphere; radial functions; quasi-interpolation; convergence.

1. HARMONIC ANALYSIS AND SETS OF SMOOTH FUNCTIONS ON S^2

Let

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

² The research was completed while this author was on study leave from the University of Leicester.

¹ This research has been partially supported by EPSRC (UK) Grant GL41639 and CNPq Brazil).

be the usual scalar product in Euclidean 3-space \mathbb{R}^3 , and S^2 be the 2-dimensional unit sphere in \mathbb{R}^3 , i.e.,

$$S^2 = \{ x \mid x \in \mathbb{R}^3, \langle x, x \rangle = 1 \}.$$

Let $d\mu$ be the normalized rotation invariant measure on the sphere, and

$$\|\varphi\|_p = \begin{cases} \left(\int_{S^2} |\varphi(x)|^p d\mu(x)\right)^{1/p}, & 1 \leq p < \infty, \\ \operatorname{ess sup}\{|\varphi(x)| \, | \, x \in S^2\}, & p = \infty. \end{cases}$$

Let $L_p = \{ \varphi \mid ||\varphi||_p < \infty \}$, and $U_p = \{ \varphi \mid ||\varphi||_p \leqslant 1 \}$.

The space L_2 has the orthogonal decomposition

$$L_2 = \bigoplus_{k=0}^{\infty} H_k$$

where H_k is the space of *spherical harmonic polynomials* of degree k. It is known that H_k has dimension 2k+1. Let $\{Y_{-k}^{(k)},...,Y_k^{(k)}\}$ be an orthonormal basis for H_k . For each $k \in \mathbb{N}$, H_k is an eigenspace of the Laplace–Beltrami operator for the sphere, Δ , corresponding to the eigenvalue $\gamma_k = -k(k+1)$, i.e., $\Delta Y_i^{(k)} = \gamma_k Y_i^{(k)}$, i = -k, ..., k.

A function Z_{η} is zonal with respect to a pole $\eta \in S^2$ if it is invariant under the action of all rotations σ of S^2 which fix η , i.e., $Z_{\eta}(x) = Z_{\eta}(\sigma x)$ for all $x \in S^2$, and $\sigma \in SO(3)$ with $\sigma \eta = \eta$. Then $Z_{\eta}(x) = \widetilde{Z}(\langle x, \eta \rangle)$ for some \widetilde{Z} defined on [-1, 1].

Equipped with a zonal kernel we may define the convolution

$$(\varphi * Z_{\eta})(x) = \int_{S^2} \varphi(y) \, \tilde{Z}(\langle x, y \rangle) \, d\mu(y) = \int_{S^2} \varphi(y) \, Z_{\eta}(\sigma^{-1}y) \, d\mu(\eta),$$

where $x = \sigma \eta$.

The real zonal polynomial

$$Z_{\eta}^{(k)}(x) = \sum_{m=-k}^{k} \overline{Y_{m}^{(k)}(\eta)} Y_{m}^{(k)}(x)$$
 (1)

is a kernel for orthogonal projection onto H^k . Furthermore,

$$||Z_{\eta}^{(k)}||_{2}^{2} = \sum_{m=-k}^{k} |Y_{m}^{(k)}(\eta)|^{2} = 2k+1, \quad \forall \eta \in S^{2}.$$

The zonal harmonics have a simple expression in terms of the Legendre polynomials P_k , which can be defined in terms of the generating function

$$\frac{1}{(1-2\rho t+\rho^2)^{1/2}} = \sum_{k=0}^{\infty} \rho^k P_k(t),$$

where $0 \le |\rho| < 1$ and $|t| \le 1$. It is known that

$$Z_n^{(k)}(x) = \tilde{Z}^{(k)}(\langle x, \eta \rangle) = (2k+1) P_k(\cos \theta),$$

where $\cos \theta = \langle x, \eta \rangle$. In the sequel, where there is no possibility of confusion, we shall not make explicit reference to the pole η .

Each $\varphi \in L_1$ has a formal Fourier expansion in terms of complex spherical harmonics

$$\varphi \sim \sum_{k=0}^{\infty} \sum_{m=-k}^{k} c_{k,m}(\varphi) Y_{m}^{(k)},$$
 (2)

where the Fourier coefficients $c_{k,m}(\varphi)$ are given by

$$c_{k, m}(\varphi) = \int_{S^2} \varphi(z) \ \overline{Y_m^{(k)}(z)} \ d\mu(z).$$

A zonal function has a Fourier series in zonal polynomials

$$Z \sim \sum_{k=0}^{\infty} c_k(Z) Z^{(k)},$$

where

$$c_k(Z) = \frac{1}{2k+1} \int_{S^2} Z(z) \ Z^{(k)}(z) \ d\mu(z).$$

With the earlier definition of convolution we obtain the following familiar expression for the Fourier series of a convolution:

$$\varphi * Z \sim \sum_{k=0}^{\infty} c_k(Z) \sum_{m=-k}^{k} c_{k,m}(\varphi) Y_m^{(k)}.$$
 (3)

We also have Young's inequality

$$\|\varphi * Z\|_q \leqslant \|\varphi\|_p \|Z\|_r, \tag{4}$$

where $1 \le p, q, r \le \infty, 1/q = 1/p + 1/r - 1$.

For more information on harmonic analysis on the sphere the reader should consult the Refs. [2, 3, 7–9, 11–13].

We shall introduce a wide range of smooth functions on a sphere in terms of multiplier operators, which, via (3), can often be realised as convolution operators. Given a sequence $\lambda = \{\lambda_k\}_{k \in \mathbb{N}}$, we shall say that the function f is in $\Lambda U_p \oplus \mathbb{R}$ if

$$f \sim c + \sum_{k=1}^{\infty} \lambda_k \sum_{m=1}^{2k+1} c_{k,m}(\varphi) Y_m^{(k)},$$

where $c \in \mathbb{R}$ and $\varphi \in U_p$. If the function $K \in L_1$ and

$$K \sim \sum_{k=1}^{\infty} \lambda_k Z^{(k)}$$

then the convolution $K * \varphi(x)$ is well defined and the function f(x) can be written in the form

$$f(x) = K * \varphi(x) + c$$

where $c \in \mathbb{R}$ is some constant. In this case we shall say $f \in K * U_p \oplus \mathbb{R}$.

We remark that the sets $\Lambda U_p \oplus \mathbb{R}$ are shift-invariant, i.e., for any $f \in \Lambda U_p \oplus \mathbb{R}$ and any $\sigma \in SO(3)$ we have

$$f_{\sigma}(x) = f(\sigma^{-1}x) \in \Lambda U_{p} \oplus \mathbb{R}.$$

2. ERROR ESTIMATES

In this section the letter C will denote a constant which will not necessarily have the same value at each occurrence.

As usual, we parametrize the points z on S^2 by their spherical coordinates $x = (\theta, \phi) \in [0, \pi] \times [0, 2\pi)$. In what follows we shall be concerned with approximation based on the equiangular grid points

$$\theta_s = \frac{\pi s}{2b}, \qquad \phi_t = \frac{\pi t}{b}, \qquad 0 \leqslant s \leqslant 2b - 1, \quad 0 \leqslant t \leqslant 2b - 1.$$

Let $x_{s,t} = (\theta_s, \phi_t)$.

For a continuous function f we consider the sequence of polynomials

$$T_{b-1}(f,x) = \sum_{k=0}^{b-1} \sum_{j=-k}^{k} \alpha_{k,j}(f) Y_j^{(k)}(x),$$
 (5)

b even, where

$$\alpha_{k,j}(f) = \frac{\sqrt{2\pi}}{2b} \sum_{s=0}^{2b-1} a_s^{(b)} \sum_{t=0}^{2b-1} \overline{Y_j^{(k)}(\theta_s, \phi_t)} f(\theta_s, \phi_t),$$

and

$$a_s^{(b)} := \frac{2^{3/2}}{b} \sin\left(\frac{\pi s}{b}\right) \sum_{l=0}^{b/2-1} \frac{1}{2l+1} \sin\left((2l+1)\frac{\pi s}{b}\right). \tag{6}$$

This is the form of the discrete Fourier series suggested by Driscoll and Healy [4]. We remark here that in [4], b is a power of 2, while the discrete orthogonality results they prove are good for all even b. It can be shown (see [5]) that

$$0 \leqslant \sum_{l=0}^{b/2-1} \frac{1}{2l+1} \sin\left((2l+1)\frac{\pi s}{b}\right) \leqslant C,\tag{7}$$

where the constant C is independent of $b \in \mathbb{N}$ and s = 0, ..., 2b - 1. We may rewrite T_{b-1} as a quasi-interpolant

$$T_{b-1}(f,z) = \sum_{s=0}^{2b-1} \sum_{t=0}^{2b-1} f(\theta_s, \phi_t) L_{s,t}^{(b-1)}(z),$$

where

$$\begin{split} L_{s,\,t}^{(b-1)}(z) &= \frac{\sqrt{2\pi}\,a_s^{(b)}}{2b} \sum_{k=0}^{b-1} \sum_{j=-k}^{k} \overline{Y_j^{(k)}(\theta_s,\phi_t)} \,\, Y_j^{(k)}(z) \\ &= \frac{\sqrt{2\pi}\,a_s^{(b)}}{2b} \sum_{k=0}^{b-1} Z_{x_{s,\,t}}(z) \end{split}$$

by (1). Thus, the quasi-Lagrange function for $x_{s,t}$, $L_{s,t}$, is zonal about $x_{s,t}$. Using Szegö [12, 4.5.3] we have the following very simple form for the quasi-Lagrange function,

$$L_{s,t}^{(b-1)}(z) = \left(\frac{\pi}{2}\right)^{1/2} a_s^{(b)} P_{b-1}^{(1,0)}(\langle z, x_{s,t} \rangle), \tag{8}$$

where $P_{b-1}^{(1,0)}$ is the Jacobi polynomial with weight (1-x).

We shall say that the multiplier sequence $\lambda = \{\lambda_k\}_{k \in \mathbb{N}} \in A_p$ if

$$\lim_{k \to \infty} |\lambda_k| \ k^{1/2} = 0, \qquad p < 4/3,$$

$$\lim_{k \to \infty} |\lambda_k| \ k^{1/2} (\ln k)^{3/4} = 0, \qquad p = 4/3,$$

$$\lim_{k \to \infty} |\lambda_k| \ k^{2(1 - 1/p)} = 0, \qquad p > 4/3.$$

If

$$K \sim \sum_{k=1}^{\infty} \lambda_k Z^{(k)}$$

for $\lambda \in A_p$ we shall (with a slight abuse of notation) say $K \in A_p$. The main result of this article is

Theorem 1. Let K be an integrable radial (zonal) function on S^2 with Fourier series

$$K \sim \sum_{k=1}^{\infty} \lambda_k Z^{(k)},$$

where $\{\lambda_k\}_{k \in \mathbb{N}} \in A_p$. Then,

$$\begin{split} \sup_{f \in K*\ U_p \oplus \mathbb{R}} \|f - T_{b-1}(f, \cdot)\|_\infty & \leq C b^{1/2} \sum_{k=b}^\infty |\varDelta^2 \lambda_k| \ k^{1+2/p}, \\ b \to \infty, \quad 1 \leqslant p \leqslant \infty. \end{split}$$

Remark 1. By a proper choice of the multiplier sequence $\{\lambda_k\}_{k\in\mathbb{N}}$ we obtain the following examples. For examples (b) and (c) the results detailed in the Appendix are required.

(1) If

$$\lambda_k = (k(k+1))^{-\alpha/2}, \quad \alpha > 0, \quad k \in \mathbb{N},$$

then the resulting convolution class $K * U_p \oplus \mathbb{R}$ is the Sobolev's class W_p^{α} ; see [2, 6]. In this case we have

$$\sup_{f \in W_p^{\alpha}} \|f(z) - T_b(f, z)\|_{\infty} \leqslant Cb^{((-\alpha + 2)/p) + 1/2}.$$

(2) The function f(x), $x \in \mathbb{R}^3$ is analytic at $x_0 \in \mathbb{R}^3$ if there is a series

$$\sum_{\alpha} a_{\alpha} (x - x_0)^{\alpha}$$

which converges to f(x) in some closed ball $|x-x_0| \le \rho$, $\rho > 0$. It is known (see [10, p. 494]) that if f(x) is analytic on the sphere S^2 then $|Y_k(f,x)| \le Ke^{-\nu k}$, where $Y_k(f,x) = Z^{(k)} * f(x)$, $k \in \mathbb{N}$ is the spherical harmonic of f of degree k, k > 0 and k > 0 are some fixed constants. So, if we put

$$\lambda_k = e^{-\alpha k}, \quad \alpha > 0, \quad k \in \mathbb{N},$$

then the resulting convolution class $K * U_p \oplus \mathbb{R}$ will be a set of analytic functions on S^2 . In this situation we have

$$\sup_{f \in K* \; U_p \oplus \mathbb{R}} \|f(z) - T_b(f,z)\|_{\infty} \leqslant C e^{-\alpha b} b^{3/2 + 2/p}.$$

(3) Let

$$\lambda_k = e^{-\alpha k^r}, \quad \alpha > 0, \quad r > 0, \quad k \in \mathbb{N}.$$

Then the set $K*U_p\oplus\mathbb{R}$ is a set of entire (if r>1) or infinitely differentiable (if 0< r<1) functions on S^2 and

$$\sup_{f \in \mathit{K} \star U_p \oplus \mathbb{R}} \|f(z) - T_b(f,z)\|_{\infty} \leqslant C e^{-\alpha b^r} b^{\min\{1,\,r\} \,+\, 1/2 \,+\, 2/p}.$$

In order to prove the main result of this paper we require several lemmas.

Lemma 1. For any zonal (radial) polynomial P_b of degree $\leq b$ on S^2 we have

$$\sum_{0 \leqslant s, \, t \leqslant 2b-1} \sin \theta_s \, |P_b(\theta_s, \phi_t)| < \frac{2b^2(1+\pi)^2}{\pi^2} \int_{S^2} d\mu(z) \, |P_b(z)|.$$

Proof. Let P_b be a polynomial on S^2 , of degree $\leq b$. P_b can be thought of as a trigonometric polynomial $P_b(z) = P_b(\theta, \phi)$ of the same degree. Let us fix $\phi = \phi_t$ and consider the integral

$$I(P_b, \phi_t) := \int_0^{\pi} |P_b(\theta, \phi_t)| \sin \theta \, d\theta = \sum_{s=0}^{2b-1} \int_{\theta_s}^{\theta_{s+1}} |P_b(\theta, \phi_t)| \sin \theta \, d\theta.$$

Since $|P_b(\theta, \phi_t)| \sin \theta$ is continuous function then, due to the mean value theorem, there is a $\tilde{\theta}_s \in [\theta_s, \theta_{s+1}]$ such that

$$I(P_b, \phi_t) = \frac{\pi}{2b} \sum_{s=0}^{2b-1} |P_b(\tilde{\theta}_s, \phi_t)| \sin \tilde{\theta}_s.$$

Now, due to the Minkowsky inequality

$$\sum_{s=0}^{2b-1} |P_{b}(\theta_{s}, \phi_{t})| \sin \theta_{s} - \frac{2b}{\pi} \int_{0}^{\pi} |P_{b}(\theta, \phi_{t})| \sin \theta \, d\theta$$

$$= \sum_{s=0}^{2b-1} |P_{b}(\theta_{s}, \phi_{t})| \sin \theta_{s} - \sum_{s=0}^{2b-1} |P_{b}(\tilde{\theta}_{s}, \phi_{t})| \sin \tilde{\theta}_{s}$$

$$\leq \sum_{s=0}^{2b-1} |P_{b}(\theta_{s}, \phi_{t})| \sin \theta_{s} - P_{b}(\tilde{\theta}_{s}, \phi_{t})| \sin \tilde{\theta}_{s}$$

$$\leq \sum_{s=0}^{2b-1} |P_{b}(\theta_{s}, \phi_{t})| \sin \theta_{s} - P_{b}(\tilde{\theta}_{s}, \phi_{t})| \sin \tilde{\theta}_{s}$$

$$\leq \sum_{s=0}^{2b-1} \int_{\theta_{s}}^{\theta_{s+1}} |(P_{b}(\theta, \phi_{t})| \sin \theta)'| \, d\theta$$

$$= \int_{0}^{\pi} |(P_{b}(\theta, \phi_{t})| \sin \theta)'| \, d\theta$$

$$< \int_{0}^{\pi} |(P_{b}(\theta, \phi_{t})| \sin \theta)'| \, d\theta.$$

$$(9)$$

Applying the Bernstein inequality to (9) we have

$$\sum_{s=0}^{2b-1} |P_b(\theta_s, \phi_t)| \sin \theta_s - \frac{2b}{\pi} \int_0^{\pi} |P_b(\theta, \phi_t)| \sin \theta \, d\theta$$

$$< (b+1) \int_{-\pi}^{\pi} |P_b(\theta, \phi_t) \sin \theta| \, d\theta$$

$$= (b+1) \left(\int_0^{\pi} |(P_b(\theta, \phi_t) \sin \theta| \, d\theta + \int_{-\pi}^0 |(P_b(\theta, \phi_t) \sin \theta| \, d\theta \right). \tag{10}$$

Suppose $P_b(z)$ has pole $z'=(\theta',\phi')$. Then $P_b^{z'}(z)=\tilde{T}_b(\cos\gamma)$, where \tilde{T}_b is a polynomial of degree $\leqslant b$ on [-1,1] and $\cos\gamma=\langle z,z'\rangle=\cos\theta\cos\theta'+\sin\theta\sin\theta'\cos(\phi-\phi')$ (see [7]). Thus

$$\int_{-\pi}^{0} |P_{b}^{(\theta',\phi')}(\theta,\phi_{t}) \sin \theta| d\theta$$

$$= \int_{0}^{\pi} |\tilde{T}_{b}(\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - (\pi + \phi'))) \sin \theta| d\theta$$

$$= \int_{0}^{\pi} |P_{b}^{(\theta',\pi+\phi')}(\theta,\phi_{t}) \sin \theta| d\theta. \tag{11}$$

Combining (10) and (11) we see that

$$\left(1 + \frac{\pi(b+1)}{2b}\right)^{-1} \frac{\pi}{2b} \sum_{s=0}^{2b-1} |P_b^{(\theta,\phi)}(\theta_s,\phi_t)| \sin \theta_s$$

$$< \left(\int_0^{\pi} |P_b^{(\theta',\phi')}(\theta,\phi_t) \sin \theta| d\theta + \int_0^{\pi} |P_b^{(\theta',\pi+\phi')}(\theta,\phi_t) \sin \theta| d\theta\right). \tag{12}$$

Let us fix now θ_s , $0 \le s \le 2b-1$. Using the same arguments as above we can show that

$$\frac{\pi}{b} \sum_{t=0}^{2b-1} |P_b(\theta_s, \phi_t)| \le (1+\pi) \int_0^{2\pi} |P_b(\theta_s, \phi)| \, d\phi. \tag{13}$$

Since the norm on S^2 is shift invariant then from (12) and (13) we have

$$\begin{split} \frac{\pi^2}{2b^2} \sum_{0 \leqslant s, \ t \leqslant 2b-1} \sin \theta_s \, |P_b(\theta_s, \phi_t)| \\ < (1+\pi) \left(1 + \frac{\pi(b+1)}{2b} \right) \int_{S^2} d\mu(z) \, |P_b(z)| \\ \leqslant (1+\pi)^2 \int_{S^2} d\mu(z) \, |P_b(z)|. \quad \blacksquare \end{split}$$

Let us define the Lebesgue function L_{b-1} for T_{b-1} by

$$L_{b-1}(\theta,\phi) := \sum_{0 \leqslant s, \, t \leqslant 2b-1} |L_{s,\,t}^{(b-1)}(\theta,\phi)|.$$

The next statement gives us order of growth of Lebesgue constants.

LEMMA 2. The Lebesgue constants of quasi-interpolation satisfy

$$\max_{z \in S^2} L_{b-1}(z) \leqslant Cb^{1/2}, \qquad b \to \infty.$$

Proof. From (8) we have

$$L_{b-1}(z) = \left(\frac{\pi}{2}\right)^{1/2} \sum_{1 \leqslant s, \ t \leqslant 2b-1} a_s^{(b)} |P_{b-1}^{(1,0)}(\langle z, x_{s,t} \rangle)|,$$

using (6) and (7). For all $0 \le s$, $t \le 2b-1$ we have, again using (6) and (7), $b^{-1}a_s^{(b)} \le Cb^{-2}\sin\theta_s$, $b \to \infty$. Therefore

$$L_{b-1}(z) \le Cb \sum_{1 \le s, \ t \le 2b-1} b^{-2} \sin \theta_s |P_{b-1}^{(1,0)}(\langle z, x_{s,t} \rangle)|.$$

Now, from Lemma 1 and the last inequality we see that

$$\max_{z \in S^2} L_{b-1}(z) \leqslant Cb \ \|P_{b-1}^{(1,0)}(\langle \cdot, \eta \rangle)\|_1 \leqslant Cb^{1/2},$$

for any fixed $\eta \in S^2$, since $||P_{b-1}^{(1,0)}(\langle \cdot, \eta \rangle)||_1 \approx b^{-1/2}$ (see [6, 7]).

LEMMA 3. Let $K \in A_p$, with $p \ge 1$. Then there is a radial (zonal) polynomial $t_{b-1}(K, \cdot)$ such that

$$||K(\cdot) - t_{b-1}(K, \cdot)||_p \le C \sum_{k=b}^{\infty} |\Delta^2 \lambda_k| k^{3-2/p}, \quad b \to \infty.$$

Proof. We will need some facts about Cesàro means. For the generating function $(1-\rho)^{-m-1}$ we have

$$\frac{1}{(1-\rho)^{m+1}} = \sum_{s=0}^{\infty} A_s^m \rho^n = \sum_{s=0}^{\infty} \frac{\Gamma(s+m+1)}{\Gamma(m+1) \Gamma(s+1)} \rho^s,$$

$$A_s^m \leqslant Cs^m, \quad s \to \infty.$$

Let

$$C_n^{\delta} = \frac{1}{A_n^{\delta}} \sum_{k=0}^n A_{n-k}^{\delta} Z^{(k)}$$

be the Cesàro kernel of order n and index δ . It is known [7] that

$$\|C_{n}^{\delta}\|_{p} \leq C \begin{cases} n^{1/2-\delta}, & p < 4/(3+2\delta), \\ n^{1/2-\delta}(\ln n)^{3/4}, & p = 4/(3+2\delta), \\ n^{2(1-1/p)}, & p > 4/(3+2\delta). \end{cases}$$
(14)

Applying the Abel transform we have the following representation which is valid, in L_p , for any $K \in A_p$:

$$K = \sum_{k=1}^{\infty} \Delta^2 \lambda_k k C_k^1,$$

where $\Delta^2 \lambda_k := \lambda_k - 2\lambda_{k+1} + \lambda_{k+2}$.

As in [3, 6], let us consider the sequence of polynomials

$$t_b = \sum_{k=1}^b \Delta^2 \lambda_k k C_k^1.$$

Using the asymptotic estimates for Cesàro kernels (14) we can complete the proof, since

$$\left\| K - \sum_{k=1}^{b-1} \Delta^2 \lambda_k k C_k^1 \right\|_p \leqslant C \sum_{k=b}^{\infty} |\Delta^2 \lambda_k| k^{3-2/p}. \quad \blacksquare$$

COROLLARY 1. Let $K \in A_r$ where $r = 1/(1 - (1/p - 1/q)_+)$. Then there is a sequence of polynomials $t_b(f)$ such that

$$\sup_{f\in AU_p\oplus \mathbb{R}}\|f-t_{b-1}(f)\|_q\leqslant C\sum_{k=b}^{\infty}\left|\varDelta^2\lambda_k\right|k^{3-2/r},\qquad b\to\infty.$$

Corollary 1 follows from the Young inequality (4) and Lemma 3.

Proof of Theorem 1. Observing that the operator $T_{b-1}(f,\cdot)$ is a linear projector onto the space of polynomials of degree $\leq b-1$ (see [4]) we can apply the Lebesgue inequality

$$|f(z) - T_{h-1}(f, z)| \le E_{h-1}(f)(1 + L_{h-1}(z)), \quad z \in S^2,$$
 (15)

where $f \in C(S^2)$, $E_{b-1}(f) = \inf\{\|f - t_{b-1}\|_{\infty} \mid t_{b-1} \in \mathcal{T}_{b-1}\}$ and \mathcal{T}_{b-1} is the subspace of polynomials of degree $\leq b-1$. The theorem follows via Corollary 1, Lemma 1, and (15).

3. EXAMPLES

In this section we give a number of examples which suggests that the convergence rate of Theorem 1 is pessimistic in terms of power scale for Sobolev classes. We approximate the zonal function $f_{\beta}(\theta) = (\cos \theta)^{\beta}$ for different non integer values of β . By [122.2.10, 22.13.8, and 22.13.9], and Parseval's identity, $f_{\beta} \in W_2^{\alpha}$ for $\beta > \alpha - 1/2$. Theorem 1 predicts a rate of convergence $b^{-\beta+1+\varepsilon}$ for any $\varepsilon > 0$.

We compute an approximation to the error

$$e_b(f) = \sup_{z \in A} |f(z) - T_b(f)(z)|,$$

where $z = (\theta_z, \phi_z) \in \Lambda$ if and only if $\theta_z = \pi j/20$ for some j and $\phi_z = l\pi/10$ for some l. In other words, we compute the pointwise error on a 20 by 20 grid on the sphere. Then, we obtain an approximate rate of convergence $r_b = \log_2(e_{2b}/e_b)$.

In Figs. 1–3 we show the errors and associated approximate rate of convergence, all given to three significant figures, for different values of β .

<u>b</u>	e_b	r_b
4	0.187	-0.261
8	0.156	-0.367
16	0.121	-0.433
32	8.96×10^{-2}	-0.465
64	6.49×10^{-2}	-0.485
128	4.64×10^{-2}	

FIG. 1. $\beta = 0.5$.

b	e_b	r_b
4	5.28×10^{-2}	-1.04
8	2.57×10^{-2}	-1.09
16	1.21×10^{-2}	-1.15
32	5.42×10^{-3}	-1.20
64	2.36×10^{-3}	-1.24
128	1.00×10^{-3}	

FIG. 2. $\beta = 1.25$.

b	e_b	$ r_b $
$\overline{4}$	2.91×10^{-2}	-1.31
8	1.17×10^{-2}	-1.33
16	4.66×10^{-3}	-1.40
32	1.77×10^{-3}	-1.45
64	6.48×10^{-4}	-1.47
128	2.34×10^{-4}	

FIG. 3. $\beta = 1.5$.

APPENDIX

Let α , r, $\beta > 0$. Then, for sufficiently large b,

$$\sum_{k=b}^{\infty} k^{\beta} e^{-\alpha k^r} \leqslant C b^{\beta+1-\min\{1,r\}} e^{-\alpha b^r}.$$

Proof. First suppose that $r \ge 1$. Then, since $(k+1)^r \ge k^r + 1$, we have $e^{-\alpha(k+1)^r} \le e^{-\alpha}e^{-\alpha k^r}$. Applying this inequality m times we see that $e^{-\alpha(k+m)^r} \le e^{-m\alpha}e^{-\alpha k^r}$. Therefore,

$$\begin{split} \sum_{k=b}^{\infty} k^{\beta} e^{-\alpha k^{r}} &\leq e^{-\alpha b^{r}} \sum_{k=0}^{\infty} (b+k)^{\beta} e^{-\alpha k} \\ &= b^{\beta} e^{-\alpha b^{r}} \sum_{k=0}^{\infty} (1+k/b)^{\beta} e^{-\alpha k} \\ &\leq C b^{\beta} e^{-\alpha b^{r}}, \end{split}$$

since the final sum converges for all positive α , β .

Now suppose 0 < r < 1. Then, for sufficiently large b,

$$\sum_{k=b}^{\infty} k^{\beta} e^{-\alpha k^{r}} \leqslant b^{\beta} e^{-\alpha b^{r}} + \int_{b}^{\infty} t^{\beta} e^{-\alpha t^{r}} dt. \tag{16}$$

Integrating by parts we have

$$\begin{split} \int_{b}^{\infty} t^{\beta} e^{-\alpha t^{r}} \, dt &= \int_{b}^{\infty} t^{\beta+1-r} t^{r-1} e^{-\alpha t^{r}} \, dt \\ &= -\frac{1}{\alpha r} \left[t^{\beta+1-r} e^{-\alpha t^{r}} \right]_{b}^{\infty} + \frac{\beta+1-r}{\alpha r} \int_{b}^{\infty} t^{\beta-r} e^{-\alpha t^{r}} \, dt \\ &\leqslant \frac{b^{\beta+1-r} e^{-\alpha b^{r}}}{\alpha r} + \frac{\beta+1-r}{\alpha r} b^{-r} \int_{b}^{\infty} t^{\beta} e^{-\alpha t^{r}} \, dt \\ &\leqslant \frac{b^{\beta+1-r} e^{-\alpha b^{r}}}{\alpha r} + \frac{1}{2} \int_{b}^{\infty} t^{\beta} e^{-\alpha t^{r}} \, dt, \end{split}$$

for large enough b. In other words, as $b \to \infty$,

$$\int_{b}^{\infty} t^{\beta} e^{-\alpha t^{r}} dt \leq 2 \frac{b^{\beta+1-r} e^{-\alpha b^{r}}}{\alpha r},$$

and the result follows for 0 < r < 1 by (16).

REFERENCES

- M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," National Bureau of Standards, Dover, New York, 1964.
- R. Askey and S. Wainger, On the behavior of special classes of ultraspherical expansions, I, II, J. Anal. Math. 15 (1965), 193–244.
- A. Bonami and J.-L. Clerk, Sommes de Cesàro et multiplicateurs des developments en harmoniques spheriques, Trans. Amer. Math. Soc. 183 (1973), 223–263.
- 4. J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, *Adv. Appl. Math.* **15** (1994), 202–250.
- S. M. Gomes, A. K. Kushpel, and J. Levesley, "Approximation in L₂ Sobolev Spaces on the 2-Sphere by Quasi-Interpolation," Tech. Rep. 1998/7, Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, UK.
- 6. A. I. Kamzolov, On the best approximation of sets of functions $W_p^{\alpha}(S^d)$ by polynomials, *Mat. Zametki* 32 (1982), 285–293. [In Russian]
- E. Kogbetliantz, Recherches sur la sommabilité des séries ultrasphériques par la méthode des moyennes arithmétiques, J. Math. 3 (1924), 107–187.
- 8. C. Müller, "Spherical Harmonics," Springer-Verlag, Berlin, 1966.
- F. D. Murnaghan, "The Unitary and Rotation Groups," Spartan Books, Washington, DC, 1962.
- S. L. Sobolev, "Introduction to the Theory of Cubature Formulae," Nauka, Moscow, 1974. [In Russian]
- E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton Univ. Press, Princeton, NJ, 1971.
- 12. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., New York, 1939.
- N. J. Vilenkin, "Special Functions and Theory of Representation of Groups," Nauka, Moscow, 1965. [In Russian]
- A. Zygmund, "Trigonometric Series," Vol. 2, Cambridge Univ. Press, Cambridge, UK, 1959.