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be the usual scalar product in Euclidean 3-space R>, and S? be the 2-dimen-
sional unit sphere in R3, ie.,

={x|xeR (x,x)=1}.
Let du be the normalized rotation invariant measure on the sphere, and

1/p
([ o aun) " 1<p<os
ess sup{ |@(x)||x e S?}, p= 0.

lol,=

Let L,={ol|l¢l,<cw}, and U,={o||el,<1}.
The space L, has the orthogonal decomposition

= @ Hy
k=0

where H, is the space of spherical harmonic polynomials of degree k. It is
known that H, has dimension 2k + 1. Let { Y*), ..., Y} be an orthonormal
basis for H,. For each ke N, H, is an eigenspace of the Laplace—Beltrami
operator for the sphere, 4, corresponding to the eigenvalue y, = —k(k+ 1),
ie, AY® =9 YP i=—k, ., k

A function Z, is zonal with respect to a pole € S? if it is invariant under
the action of all rotations ¢ of $? which fix #, ie., Z ,(X)=Z,(ox) for all
xeS? and 0eSO(3) with gp=75. Then Z,(x)= (<x n>) for some Z
defined on [ —1, 1].

Equipped with a zonal kernel we may define the convolution

(9 Z)(x)= | _o(3) Z(Cx ) duly) = [ 9(3) Z,fo™"y) dun),

where x = a.
The real zonal polynomial

ZP(x Z YP(n) Y(x) (1)
is a kernel for orthogonal projection onto H*. Furthermore,

k
1zP)2=Y [Y®Om)2=2k+1, VyeS>

m=—k
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The zonal harmonics have a simple expression in terms of the Legendre
polynomials P,, which can be defined in terms of the generating function

1 o0
S ————
(I=2pt4 "2,

pkpk(t)s
0

where 0 < |p| <1 and [¢f] < 1. It is known that
ZP(x) =Z®({x, n)) = (2k+ 1) Pi(cos 0),

where cos 0 =< x, n). In the sequel, where there is no possibility of confu-
sion, we shall not make explicit reference to the pole 7.

Each ¢ € L, has a formal Fourier expansion in terms of complex spherical
harmonics

[ee) k
QDN Z Z Ck,m((p) Yﬁr]f)a (2)
k=0 m=—k
where the Fourier coefficients ¢, _,,(¢) are given by

Coml @)= | 0(2) YIOE) dul).

S2
A zonal function has a Fourier series in zonal polynomials
o0
Z~ Y cl(2)Z®,
k=0

where

1

=231 Z(z) ZW(z) du(z).

Wl Z)

With the earlier definition of convolution we obtain the following
familiar expression for the Fourier series of a convolution:

pxZ~ Y lZ) Y cnle) Y5 (3)

k=0 m=—k

We also have Young’s inequality

o« Zll,<lel, 1], (4)

where 1 < p, g, r<oo, 1/g=1/p+1/r—1.
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For more information on harmonic analysis on the sphere the reader
should consult the Refs. [2, 3, 7-9, 11-13].

We shall introduce a wide range of smooth functions on a sphere in terms
of multiplier operators, which, via (3), can often be realised as convolution
operators. Given a sequence = {4;},.n, We shall say that the function f
isin AU, ®R if

2k+1

f~e+ Z Ak Z Ck,m((/)) Yf,]f),
k=1 m=1

where ce R and ¢ € U,. If the function Ke L; and

K~y 2,Z%
k=1

then the convolution K * ¢(x) is well defined and the function f{x) can be
written in the form

fx) =K * p(x) + ¢,

where ¢ € R is some constant. In this case we shall say fe K+ U, @ R.
We remark that the sets AU, ®R are shift-invariant, ie., for any
feAU, ®R and any g€ SO(3) we have

fo(x)= flo"'x) edU, ®R.

2. ERROR ESTIMATES

In this section the letter C will denote a constant which will not necessarily
have the same value at each occurrence.

As usual, we parametrize the points z on S? by their spherical coordinates
x=(0,4)e[0,7] x[0,27). In what follows we shall be concerned with
approximation based on the equiangular grid points

s nt
0,=— =— 0<s<2h—1, 0<1<2h—1.
s Zb > ¢t b s s
Let x, ,=(0,, ¢,).
For a continuous function f we consider the sequence of polynomials

b—1

T, ((fix)=23 X a () YO, (3)

k=0 j=—k
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b even, where

277: 2b—1 2b—1
o ()= a® Y Y0, 4, 10, ),
2b s=0 t=0
and
232 as\ 2271 s
)= ——sin( (2/+1)—].
a’ e s1n<b> EO 2H_lsm<( I+ )b> (6)

This is the form of the discrete Fourier series suggested by Driscoll and
Healy [4]. We remark here that in [4], b is a power of 2, while the discrete
orthogonality results they prove are good for all even b. It can be shown
(see [5]) that

b2—1

1
0< IZ:O T sm<(2]+l) b><C (7)

where the constant C is independent of e N and s=0, ..., 2b — 1.
We may rewrite 7, _; as a quasi-interpolant

26—1 2b—1

Ty_i(f2)= Z Z S0, ¢,) LT V(2),

where

/27z a® b=l
LT V(z) = > Z YP(0,, 9,) Y(z)

k=0 j=—k

&) b—1
_\/Zna Z Z (2)
k=

by (1). Thus, the quasi-Lagrange function for x, ,, L, ,, is zonal about x, ,
Using Szegd [12,4.5.3] we have the following very simple form for the
quasi-Lagrange function,

12
LE7V(z) = <> aP Pz x,0), (8)

where P{9 is the Jacobi polynomial with weight (1 — x).
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We shall say that the multiplier sequence A= {4}, €4, if

lim |4 k2=0, p<4/3,

k — o0

lim 4| k"2 (Ink)¥ =0,  p=4/3,

k— oo

lim || k20-UP =0,  p>4/3.

k— oo

If
K~ Z lkZ(k)
k=1
for 4 € A, we shall (with a slight abuse of notation) say Ke 4,,.

The main result of this article is

THEOREM 1. Let K be an integrable radial (zonal) function on S* with
Fourier series

K~ Y 2,Z%,
k=1
where { A} yen € A,. Then,
sup  If =Ty i(fs )< CBYV2 Y | AP0 | K122,
feKxU,®R k=b
b—> o, 1<p<oo.
Remark 1. By a proper choice of the multiplier sequence {4} ,cn We

obtain the following examples. For examples (b) and (c) the results
detailed in the Appendix are required.

(1) If
Jo=(k(k+1)"2, >0, keN,

then the resulting convolution class K = U, @ R is the Sobolev’s class W7,
see [2, 6]. In this case we have

sup [ £(2) = Tp( f; 2)ll oo < CHUT*H2IPI T2,
few,
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(2) The function f(x), x € R? is analytic at x, € R? if there is a series
Z aoc(x - xO)a

which converges to f(x) in some closed ball |x — x| < p, p>0. It is known
(see [ 10, p. 494]) that if f(x) is analytic on the sphere S? then |Y,(f, x)| <
Ke™*, where Y,(f. x)=2Z"® « f(x), ke N is the spherical harmonic of f of
degree k, K>0 and v >0 are some fixed constants. So, if we put

Jp=e "%, x>0, keN,

then the resulting convolution class K+ U, @R will be a set of analytic
functions on S2. In this situation we have

Sup 1 f(2) =Ty fo 2)| oo < Ce™*bp32+2p,

feK»U,®R
(3) Let
Ip=e " a>0, r>0, keN.

Then the set K+ U, ®R is a set of entire (if 7> 1) or infinitely differen-
tiable (if 0 <r < 1) functions on S? and

sup [ f(2) = Ty(f. 2) ]| o < Ce =¥ pminthri #1242/,
SeK+U,@R

In order to prove the main result of this paper we require several lemmas.

LemMMA 1. For any zonal (radial) polynomial P, of degree <b on S* we
have

. 2b%(1 2
L S0 10 o) < ) ol

0<s,1<2b—1

Proof. Let P, be a polynomial on S?, of degree <b. P, can be thought
of as a trigonometric polynomial P,(z) = P,(6, ¢) of the same degree. Let
us fix ¢ =¢, and consider the integral

T . 2b_1 HS+1 .
1Py $):= | 1Py0.¢)|sin0d0 =Y | " P(0.4,) sin0do.
s=0

s
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Since | P,(0, ¢,)| sin 0 is continuous function then, due to the mean value
theorem, there is a 0, €[ 0,, 0, ] such that

2b—1

z |Pb(§s9 ¢t)| Sin gs‘

I(Pba ¢t) :%
s=0

Now, due to the Minkowsky inequality

2b—1 b -
S |Py(0,, ¢,)] sin 0, ——j \P,(0, ¢,)| sin 0 dO

s=0

2b—1 2b—1 - o~
= 2 |Py(0,,¢)Isin0,— 3. |Py(0,, ¢,)] sin 0,
s=0 s=0
2b—1 - -
< ) |Py(0,, ¢,) sin 0,— Py(0,, ¢,) sin 0,
s=0
2b—1

Z j‘“ ((P4(0, §,) sin O)| dO
= ["1(P4(0, ¢, sin 0y a0

<[" 1Py0. 9,y sin 0y do. 9)

—T7

Applying the Bernstein inequality to (9) we have

2b—1 ] 2b = ]
S 120 6l sin 0= [ IPy(0. ¢,)| sin 0.d6

s=0

<(b+1)f” |P,(6, ) sin 6] dO
—(b+1) <f (P40, ) sm9|d9+j Pb9¢)sin0|d0>. (10)

Suppose P,(z) has pole z' = (¢, ¢'). Then PZ(z) = T,(cos y), where T, is
a polynomial of degree <bon [ —1,1] andcosy=<z,z') =cosfcos ' +
sin 0 sin 0’ cos(¢ —¢") (see [7]). Thus
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0 ’ ’
| 190, 9,) sin 0] do
= r |T,(cos 0 cos 0 +sin 0 sin 0’ cos(¢p — (n +¢'))) sin ] dO

0
:j” |PY- =490, ¢,) sin 0] dO. (11)

0

Combining (10) and (11) we see that

<1 b+ 1)>1 n 251

) 3y X 1RSI sino,

=0

<[ 1P 90, §,)sin 0] do+ [ |P-=+9(0, §,)sin 0] d0 ). (12)
0 b 0 b

Let us fix now 0, 0 <s<2b— 1. Using the same arguments as above we
can show that

2b—1

X PO gl <) [ PO, ) db (13)

Since the norm on S? is shift invariant then from (12) and (13) we have

_ Z sin 9S|Pb(esa ¢t)|

2
2b 0<s,t<2b—1

a(b+1)
2b

<+ (12 ) 12,

<(U+72 [ du(z) 1Py B
SZ
Let us define the Lebesgue function L,_ for T, _, by

Ly (0,9):= % |ILI7V0,4)

0<s,t<2b—1
The next statement gives us order of growth of Lebesgue constants.
LEMMA 2. The Lebesgue constants of quasi-interpolation satisfy

ma)ng_l(z)ngl/z, b— co.
zeS
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Proof. From (8) we have
T 1/2
Lb_4<z)=:<2> Y a? 1P X))
1<s,t<2b—1
using (6) and (7). For all 0 <s, t <2b — 1 we have, again using (6) and (7),

b='a'® < Chb=?sin 0, b — co. Therefore

L (2)<Ch Y b7sin0, [Pz x, ).

1<s,1<2b—1

Now, from Lemma 1 and the last inequality we see that

max L, _,(z) < Cb 1P mo) [ < Cb'2,

zeS

for any fixed € S?, since |PS-0({-, 7)) =<b""? (see [6, 7]).

Lemma 3. Let Ke A,, with p > 1. Then there is a radial (zonal) polyno-
mial t,_ (K, -) such that

[K(-)—t, (K ), <C Z | A2, | K327, b— oo.

k=b

Proof. We will need some facts about Cesaro means. For the generating
function (1—p)~™~! we have

1 2 I(s+m+1)

a—pyi= ZA”' "=

ETm+) I+

A" < Cs™, s — 0.

s

Let

1
Ci=— S ALz

n k=0

be the Cesaro kernel of order » and index J. It is known [ 7] that

n'?=2 p<4/(3+20),
ICo,<C<n'>"(Inn)**,  p=4/(3+20), (14)
n?1 =1, p>4/(3+20).
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Applying the Abel transform we have the following representation which
is valid, in L,, for any Ke 4,,:

K= Z AZAkaI,
k=1

Where Az;hk ::)vk—21k+1 +)“k+2'
As in [ 3, 6], let us consider the sequence of polynomials

b
tb: Z Azikkcllc
k=1
Using the asymptotic estimates for Cesaro kernels (14) we can complete
the proof, since

b—1
K=Y 42kC]!
k=1

<C Y |42 k327 ]
k=b

p

COROLLARY 1. Let Ke A, where r=1/(1—(1/p—1/q).). Then there is
a sequence of polynomials t,(f) such that

sup I f =1, (g <C X 1420 K272 b o,
k7

feAU,®R =b
Corollary 1 follows from the Young inequality (4) and Lemma 3.

Proof of Theorem 1. Observing that the operator T, _,(f, -) is a linear
projector onto the space of polynomials of degree <b—1 (see [4]) we can
apply the Lebesgue inequality

f(2) =Ty (£ <SEp 1(/)1+L, 1(2)), z€S% (15)

where fe C(S?), E,_ (f)=inf{||f—t,_i|o| t4_1 €T,_1} and F,_, is
the subspace of polynomials of degree <b—1. The theorem follows via
Corollary 1, Lemma 1, and (15). ||

3. EXAMPLES

In this section we give a number of examples which suggests that the
convergence rate of Theorem 1 is pessimistic in terms of power scale for
Sobolev classes. We approximate the zonal function f4(0) = (cos 0)” for
different non integer values of . By [122.2.10, 22.13.8, and 22.13.9], and
Parseval’s identity, f, € W5 for f>a—1/2. Theorem 1 predicts a rate of
convergence b #*1%¢ for any &> 0.
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We compute an approximation to the error

e,(f)=sup |f(z) = T,(f)(2)],

zed

where z= (6., ¢.) € A if and only if 6, = 7j/20 for some j and ¢, = /z/10 for
some /. In other words, we compute the pointwise error on a 20 by 20 grid
on the sphere. Then, we obtain an approximate rate of convergence r, =
log, (e /e).

In Figs. 1-3 we show the errors and associated approximate rate of
convergence, all given to three significant figures, for different values of S.

b I €p I Ty

4 0.187 -0.261
8 0.156 -0.367
16 0.121 -0.433
32 | 8.96 x 1072 | -0.465
64 | 6.49 x 1072 | -0.485
128 | 4.64 x 1072

FIG. 1. =05

b | ep Th

4 1528 x1072]-1.04

8 1257x1072-1.09
16 | 1.21 x 1072 | -1.15
32 | 5.42 x 1073 | -1.20
64 | 2.36 x 1073 | -1.24
128 | 1.00 x 1073

FIG. 2. p=125.

b | ey Ty

4 1291 x10°27]-1.31

8 |1.17%x1072-1.33
16 | 4.66 x 1073 | -1.40
32 | 1.77x 1073 | -145
64 | 6.48 x 107 | -1.47
128 | 2.34 x 10~

FIG. 3. f=15.
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APPENDIX

Let o, r, f>0. Then, for sufficiently large b,
i kﬂe—ak’< ChB+1—min{l, 1}, —ab”
k=b

Proof. First suppose that »>1. Then, since (k+1)">k"+ 1, we have
e dk+ D < om%e =" Applying this inequality m times we see that
e~ Hk+m’ o —mxo—ak’ Therefore,

Y kfem* <em" Y (b+k)Pem*

k=b k=0

=bPe=" Y (14k/b)fe=*

k=0
< ChPe—",

since the final sum converges for all positive a, f.
Now suppose 0 <r < 1. Then, for sufficiently large b,

Y kFe—k < hhe— ' 4 L the == dy. (16)
k=b

Integrating by parts we have

o0 o0
J the=" dtzf phrl=rgr=le=ot" gy
b b

p+1—r

1 r
- _ [tﬂ+lfrefact ]ZO+
or or

o0
f tP—re— dt
b

pB+1—ro—ab’ +1—r o0 ,
< +ﬁ b*’f tPe—" dt
or oar b

bﬁ+l—re—ocb’ 1 roo .
Si-l-*f tPe—x dl‘,
or 2/

for large enough b. In other words, as b — oo,

B+1—r,—ab’

* r
j the—" dt <2 ——— |
b or

and the result follows for 0 <r<1 by (16). |
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